Progetti che vedono coinvolta la Sezione di Bologna


Flexible, large-area patches for real-time detection of onizing radiation

coordinato da TTLab, il Laboratorio di Trasferimento Tecnologico dell’INFN in Emilia Romagna (



Scientific PI Beatrice Fraboni

On going (Start date 04/07/2019 – End date 03/07/2021)

FORTRESS Flexible, large-area patches for real-time detection of onizing radiation
INFN TTLab partecipa, in qualità di coordinatore, al progetto “Fortress: Flexible, large-area patches for real-time detection of ionizing radiation” all’interno del programma di finanziamento della Regione Emilia Romagna POR FESR 2014-2020.
il progetto, coordinato da INFN TTLab, vede coinvolti anche l’Università di Bologna, con il centro inter-dipartimentale CIRI MAM, la società Mister Smart Innovation del Tecnopolo Bologna CNR e l’Azienda sanitaria IRCCS di Reggio Emilia.
Il progetto Fortress ha l’obiettivo di sviluppo dei rivelatori innovativi di radiazioni ionizzanti (raggi X e gamma) basati su film sottili e flessibili di semiconduttori organici. Il sistema integrato consisterà in una matrice 2D leggera e flessibile di sensori di radiazione e di una elettronica di lettura dedicata in tempo reale. I prototipi così sviluppati saranno indossabili, alimentati a bassa potenza e successivamente validati in condizioni operative reali presso le aziende coinvolte nel progetto. Tra le applicazioni previste, è possibile annoverare il controllo in tempo reale con la riduzione del rischio associato ai trattamenti di radioterapia e medicina nucleare e il monitoraggio delle emissioni delle sorgenti a raggi X utilizzati in ambito di diagnostica medicale.

Programma POR FESR Regione E-R


Il progetto Fortress partecipa al concorso L’Europa è qui, organizzato dalla Regione Emilia-Romagna. Questo video racconta ciò che è stato realizzato grazie al Fondo europeo di sviluppo regionale e partecipa alla nuova campagna di comunicazione della Regione Emilia-Romagna sui risultati e le opportunità dei Fondi europei. Il video è disponibile al seguente link Fortress L’Europa è qui video

Scientific PI Angelo Carbone

On going (Start date 01/11/2017 – End date 31/10/2020)

The iTHEPHY project aims at developing innovative student-centered learning methodologies for master’s degree students in physics, contributing to increasing the internationalization of physics master courses and of the students, promoting mobility. The careers of students enrolled in Physics courses after the degrees normally evolve in an international research context (universities, research institutes, private industries, etc.). However, the small number of exchanges are limited by crossing cultural and language boundaries, which prevent students and the master courses to have the right level of internationalization during their studies.

Programma ERASMUS+

Development of a UV imaging system in liquid argon detectors for neutrino, particle, and medical physics applications

Scientific PI Alessandro Montanari

On going (Start date 01/09/2019 – End date 31/08/2022)

In this Project we want to prove that the topological reconstruction of neutrino or other particle interactions in noble liquids detectors is possible by means of the prompt UV scintillation light emitted by both Argon and Xenon. In particular, we want to show that the spatial reconstruction of charged particle tracks and vertices in Liquid Argon (LAr) can be obtained through the stereo imaging of the prompt UV light copiously emitted at the peak wavelength of 128 nm. If successful, this Project will represent a major breakthrough in the field. It will provide a much faster, simpler and cheaper alternative to the current approaches, which are based either on the complex and delicate drift Time Projection Chambers (TPCs) or on the even more advanced double-phase technologies. Indeed, in this new framework the UV imaging would be done using a small set of relatively cheap high field-of-view and high focal-depth cameras, which observe a large volume of Liquid Argon in stereo mode. Costs and complexity would be dramatically reduced and, even more important, the event detection and readout would be faster by more than four order of magnitudes, from >10 micro-sec scale of the electron drift time down to the ns scale of the scintillation emission. The key idea of the Project is the use of a Coded Aperture Mask coupled to an existing high granularity photon detector such as CCDs or SiPMs. In the UV range, in fact, it is not easy to design a standard imaging optical system based on lenses and/or mirrors. If the Project will be successful, we will put solid foundations for future larger investments on this line of research and to the implementation of this new technology in the context of future neutrino detectors such as DUNE.
We believe that other important technological and scientific applications will be made possible. In particular, we believe that the combination of high granularity, nanosecond scale time resolution, and a complete insensitivity to magnetic field offer the ideal technology for PET-MRI systems.

Programma PRIN Bando 2017 finanziato dal Ministero dell’Istruzione, dell’Università e della Ricerca

INTENSE: particle physics experiments at the high intensity frontier, from new physics to spin-offs. A cooperative Europe – United States – Japan effort.

Local Scientific PI Laura Patrizii

On going (Start date 01/01/2019 – End date 31/12/2022)

INTENSE promotes the collaboration among European, US and Japanese researchers involved in the most important particle physics research projects at the high intensity frontier. The observation of neutrino oscillations established a picture consistent with the mixing of three neutrino flavors with three mass eigenstates and small mass differences. Experimental anomalies point to the presence of sterile neutrino states participating in the mixing and not coupling to fermions. Lepton mixings and massive neutrinos offer a gateway to deviations from the Standard Model in the lepton sector including Charged Lepton Flavor Violation (CLFV). The FNAL Short-Baseline Neutrino (SBN) program based on three almost identical liquid argon Time Projection Chambers located along the Booster Neutrino Beam offers a compelling opportunity to resolve the anomalies and perform the most sensitive search for sterile neutrinos at the eV mass scale through appearance and disappearance oscillation searches. MicroBooNE, SBND and Icarus will search for the oscillation signal by comparing the neutrino event spectra measured at different distances from the source. The FNAL SBN program is a major step towards the global effort of the neutrino physics community in realising the Deep Underground Neutrino Experiment (DUNE). Mu2e at the FNAL Muon Campus will improve the sensitivity on the search for the CLFV neutrinoless, coherent conversion of muons into electrons in the field of a nucleus by four orders of magnitude. INTENSE researchers have provided major contributions to the SBN and Mu2e projects and will take leading roles in the commissioning of the detectors, data taking and analysis. These endeavors foster the development of cutting-edge technologies with many spin-offs outside particle physics. INTENSE promotes multidisciplinary collaboration through “muography” which uses cosmic-ray muons to image the interior of large targets, including volcanoes, glaciers and archaeological sites.

Programma MSCA-RISE-2018 finanziato dall’Unione Europea

Scientific PI Tommaso Chiarusi

Concluded (Start date 01/05/2018 – End date 31/12/2019)

European Researchers’ Night (ERN) events promoted by the SOCIETY Consortium will take place in 5 cities (Bologna, Forlì¬, Cesena, Ravenna and Rimini), with a program extended to both 2018 and 2019, for a total project duration of 18 months. SOCIETY aims to present research as the best tool to sort out the Societal Challenges that human beings face. SOCIETY will rely on interactivity and engagement at large: the project will aim to produce a Night co-design approach, in which researchers together with society will conceive the event programme. After the success of the previous ERN edition, the Consortium comes with a new proposal, inspired by the EU Year of Cultural Heritage. This is reflected by the new concept pointed out in the new title and acronym, where SOCIETY now stands for words that can be used to define our cultural heritage: Science, histOry, Culture, musIc, Environment, arT, technologY. The proposal stands at the intersection between these concepts. We’ll try to identify the features that shape and define our perception of ourselves and how we perceive who lives near and far from us. What is it that defines our culture? How and when is it that what we know, what we do, where we are, how we speak and move, and eat, and wear become culture? And finally, can our cultural heritage help us look ahead, understand the present, and to imagine the future? ERN events will explore the many ways in which research may help us understand, sustain, preserve, and develop our cultural heritage, in all its various shades and declinations. They will be designed in order to attract different kinds of publics. However, secondary school students, who are about to make their choice in terms of career, will be a privileged target, also through the involvement of Eu and MSCA researchers. Specific effort will be devoted to involve female young researchers and students in the activities, to stress that research needs increasing contribution from women to reach its goals.

SOCIETY è un progetto finanziato dalla Commissione Europea nell’ambito delle azioni Marie Sklodowska-Curie.

Functional and Renormalization-Group methods – Italian Meeting (FRGIM)

Scientific PI Gian Paolo Vacca

Concluded (Start date 01/06/2019 – End date 31/12/2019)

Le teorie di campo (TdC), quantistiche e/o statistiche, occupano una posizione centrale nella fisica teorica contemporanea grazie al loro ampio spettro di applicazioni e alla loro capacità predittiva. Esse costituiscono ormai un linguaggio scientifico universale, che accomuna la fisica nucleare e subnucleare, la gravitazione e la cosmologia, lo studio dei fenomeni statistici all’equilibrio e fuori dall’equilibrio, fino ad arrivare a studi interdisciplinari come la scienza dei materiali e lo studio dei sistemi viventi, dalle proteine ai gruppi animali (“active matter”). Tuttavia, una definizione precisa delle TdC e il controllo computazionale sulle loro proprietà sono nella maggior parte dei casi difficili da ottenere. A tal fine, un aspetto cruciale delle TdC è la possibilità di studiarne le proprietà mediante una rete di differenti formalismi e metodologie. Tra quest’ultime spiccano i metodi funzionali e del gruppo di rinormalizzazione (RG), due pietre miliari nello sviluppo delle TdC della seconda metà del Novecento. Il presente progetto, che si è focalizzato sulla ricerca teorica che si svolge all’interfaccia tra esse, ha avuto sede in Italia con coinvolgimento di numerosi giovani ricercatori internazionali di alto livello.

Progetto finanziato dall’Associazione di Fondazioni e di Casse di Risparmio Spa


Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

Questo sito utilizza i cookie per fornire la migliore esperienza di navigazione possibile. Continuando a utilizzare questo sito senza modificare le impostazioni dei cookie o cliccando su "Accetta" permetti il loro utilizzo.